Wędrówki matematyczno-przyrodnicze
Celem głównym jest rozwój kompetencji kluczowych uczniów klas I-III z zakresu matematyki, rozszerzenie wiedzy z zakresu edukacji matematycznej i przyrodniczej.
Poszukując celów do innowacji skupiłam się na kilku podstawowych aspektach rozwoju ucznia
Podczas innowacji czniowie będą uczyć się czytać ze zrozumieniem tekst zadania matematycznego, oraz doświadczenia przyrodniczego. Postarają się również dostrzegać dane sytuacyjne i liczbowe. Ścisła korelacja matematyczno – przyrodnicza w klasach młodszych pozwoliła zwrócić nam uwagę, iż te dwa przedmioty czerpią z siebie nawzajem urozmaicając naukę i pomagając w rozwijaniu myślenia logicznego. Oczywiście, sposoby, techniki i metody działań innowacyjnych będą różne w poszczególnych latach przeprowadzania innowacji. Idąc za Piagetem (stopnie rozwoju mowy i myślenia dziecka) w klasie pierwszej rozwijać będziemy myślenie konkretne. Dopiero później rozwijać będziemy myślenie logiczne i abstrakcyjne. Na lekcjach postaramy się stworzyć takie warunki, które pobudzają uczniów do aktywnego poznania rzeczywistości. Aktywność twórczą przejawia uczeń, który jest zdolny do myślenia dywergencyjnego. Chcąc pobudzić ucznia na czoło należy wysunąć metody problemowego uczenia się, metody organizujące działanie dziecka, metody umożliwiające obserwacje i odkrywanie. Przez cały czas zajęciom powinno towarzyszyć przeżywanie radości, czasem smutek, wzruszenie. (zwłaszcza podczas działań przyrodniczych – eksperymentowanie) Ponieważ uczniom w klasie pierwszej brakuje jeszcze odwracalności myślenia, która stanowi warunek uznania czynności myślowych za operację, oraz jest koniecznym warunkiem do kształcenia się pojęć, dopiero z czasem będziemy wdrażać kształtowanie pojęć stałości.
W drugiej i trzeciej klasie rozwijane będzie myślenie logiczne szczególnie zwracając uwagę na odwracalność, kształtowanie się pojęć stałości, ujęcie materiału z różnych punktów widzenia, analizowanie oraz abstrahowanie.